
libmunin Documentation
Release 0.0.1

Christopher Pahl

October 20, 2013

CONTENTS

1 Design 1
1.1 Overview . 1
1.2 Glossary . 2

2 Developer Section 5
2.1 context.h . 5
2.2 song.h . 7
2.3 iterator.rst . 9
2.4 history.rst . 9
2.5 persistence.rst . 10

3 User Section 11
3.1 Command Line Utility . 11

4 Indices and tables 13

i

ii

CHAPTER

ONE

DESIGN

1.1 Overview

Figure 1.1: Complete Overview of one libmunin Context.
Click the Image to enlarge.

1.1.1 Inputs

1. Music Database

1

libmunin Documentation, Release 0.0.1

The Music Database is the set of songs you want to generate recomnendations from. Initally you define how a
Song looks like, i.e. you define it has an artist, album and title field for example.

A single Song can actually have more attributes than these, but only those three would be used by the computa-
tion.

2. Listen History

The second input is the Listen History. In contrast to the Music Database it is optional (*).

(*) Although you effectively disable libmunins main feature this way.

1.1.2 Internal

Todo
Actually write this.

1.1.3 Outputs

Todo
Actually write this.

1.1.4 Attributes

Todo
Actually write this.

1.2 Glossary

Song In libmunin’s Context a Song is a set of attributes that have a name and a value. For example a Song might
have an artist attribute with the value Amon Amarth.

Apart from the Attributes, every Song has a unique ID.

Distance A distance is the similarity of two songs a and b expressed in a number between 0.0 and 1.0. The Distance
is calculated by the DistanceFunction and is cached in the DistanceMatrix.

DistanceFunction A DF is a function that takes two songs and calculates the Distance between them.

More specifically, the DF looks at all Common Attributes of two songs a and b and calls a special DF attribute-
wise. These results are weighted, so that e.g. genre gets a higher precedence, and summed up to one number.

DistanceMatrix A DM caches all calculated Distances. The size of the matrix D is the NxN if N is the number of
songs loaded in a Context.

You can assume:

D(i, j) = D(j, i)∀i, j ∈ D

D(i, i) = 1.0∀i ∈ D

2 Chapter 1. Design

libmunin Documentation, Release 0.0.1

Context A Context is one handle of libmunin. One Context has one Music Database and one Listen History as Input
and outputs Recomnendations based on that.

You can have more than one Context, and therefore more than one Stream of Recomnendations.

1.2. Glossary 3

libmunin Documentation, Release 0.0.1

4 Chapter 1. Design

CHAPTER

TWO

DEVELOPER SECTION

Public API:

2.1 context.h

2.1.1 Description

A Context is a Handle to libmunin. You can generate recomnendations by feeding a Context with a set of songs and,
optionally, with the listening history. The structure on C-side is called MuninCtx.

You can create a MuninCtx with munin_ctx_create(). When done you should pass it to
munin_ctx_destroy()

The main purpose of a Context is holding the set of songs you want to generate recomnendations from.
In order to add Songs to the Context you can use munin_ctx_feed(), but it is very advisable to call
munin_ctx_begin()/munin_ctx_commit() before/after if you add many songs. You should be aware that
adding a song means calculating quite some stuff. Packing it in a Transaction reduces this overhead significantly.

Todo
Tell reader about AttributeMask.

2.1.2 Usage Example

#include <stdlib.h>
#include <munin/context.h>

int main(void)
{

/* Create a new Context */
MuninCtx *ctx = munin_ctx_create();

/* Begin a new Transaction */
munin_ctx_begin(ctx);

for(int i = 0; i < 100; ++i) {
long song_id = munin_song_new();
muning_song_set(song_id, "artist", "Amon Amarth");
munin_ctx_feed(ctx, song_id);

}

5

libmunin Documentation, Release 0.0.1

/* Commit all feeded songs to the db */
munin_ctx_commit(ctx);

/* Kill all associated ressources */
munin_ctx_destroy(ctx);
return EXIT_SUCCESS;

}

2.1.3 Reference

Types:

MuninCtx
Member of this structure should not be accessed directly.

Functions:

MuninCtx * munin_ctx_create(void)
Allocates a new Context.

Returns A MuninCtx, pass it to munin_ctx_destroy() when done

void munin_ctx_destroy(MuninCtx * ctx)
Destroys a Context and all associated memory.

Ctx On what context to operate.

void munin_ctx_begin(MuninCtx * ctx)
Before adding songs to the database a transaction has to be opened. This speeds up adding many
songs (like the initial import) quite a bit since adding a song involves calculating a Distance to every
other Song.

You can call munin_ctx_feed() in a begin/commit block.

Ctx On what context to operate.

void munin_ctx_commit(MuninCtx * ctx)
Add all feeded songs to the database at once.

Calling this without munin_ctx_begin() before is an error.

Ctx On what context to operate.

void munin_ctx_feed(MuninCtx * ctx, long song_id)
Feed a Song to the Context. Future Recomnendations might contain this song now.

Ctx On what context to operate.

Song_id The Song to add, it is referenced by an ID.

void munin_ctx_remove(MuninCtx *ctx, long song)
Removes a song from the Context.

Ctx The context to operate on.

Song a SongID

6 Chapter 2. Developer Section

libmunin Documentation, Release 0.0.1

2.2 song.h

2.2.1 Description

A Song is the elementar node in libmunin.

In order to be fully threadsafe there is no structure named MuninCtx, since it may be freed behind your back when
you look. If you’d continue to use it, BadThings™ would happen. Instead a Song is identified by a unique Integer-ID.

The main purpose of a Song is to set attributes to it. You can set all attributes you previously set in the Context‘s
AttributeMask.

The ususal attributes are:

• artist
• album
• title
• releaseartist
• duration
• genre
• mood
• track
• rating
• date

It is recomned to use these as a convention. You can of course define tags as you wish to. Here’s a list of attributes
you can get inspiration from:

http://wiki.musicbrainz.org/MusicBrainz_Picard/Tags/Mapping

Warning: Memory Management:
libmunin will NOT copy the attributes you set. BadThings™ will happen if you free the data you set. This decision
was made in order to be able to handle very large sets of songs without memory penality. If you wish to copy the
attribute use strdup() and register a free function when creating the AttributeMask.

2.2.2 Usage Example

long song = munin_song_create(ctx);

munin_song_begin(ctx, song);
munin_song_set(ctx, song, "artist", "Debauchery");
munin_song_set(ctx, song, "artist", "Death Metal Warmachine");
munin_song_commit(ctx, song);

printf("%s\n", munin_song_get(ctx, "artist"));

/* Add it to the set */
munin_ctx_feed(ctx, song);

/* Oh, crap didn’t want to feed it actually */
munin_ctx_remove(ctx, song);

2.2. song.h 7

http://wiki.musicbrainz.org/MusicBrainz_Picard/Tags/Mapping

libmunin Documentation, Release 0.0.1

2.2.3 Reference

Functions:

long munin_song_create(MuninCtx *ctx)
Create a new song.

Ctx The context to operate on.

Returns An ID that references a Song.

void munin_song_begin(MuninCtx *ctx, long song)
Begin editing a song.

Ctx The context to operate on.

Song a SongID

void munin_song_commit(MuninCtx *ctx, long song)
Commit edits to a song. Causes every Distance to be rebuild for this song.

Ctx The context to operate on.

Song a SongID

const char * mn_song_get(MuninCtx *ctx, long song, const char *key)
Get an Attribute from a song.

Ctx The context to operate on.

Song a SongID

Key The attribute name

void munin_song_set(MuninCtx *ctx, long song, const char *key, const char *value)
Set an attribute of the song.

Ctx The context to operate on.

Song a SongID

Key The attribute name

Value The value to set

bool munin_song_is_valid(MuninCtx *ctx, long song)
Check if the ID passed as song is actually valid, i.e. if the ID exists and the song was not removed.

Ctx The context to operate on.

Song a SongID

Returns True if the Song is valid

Todo
Define API for MuninAttrIter

8 Chapter 2. Developer Section

libmunin Documentation, Release 0.0.1

2.3 iterator.rst

2.3.1 Description

2.3.2 Usage Example

//

2.3.3 Reference

Functions:

2.4 history.rst

2.4.1 Description

The Listen History is the second Input to to libmunin. You can feed listened songs as a hint to libmunin which will
base the next recomnendations based on them. These are the different scenarios:

Playcount Recent Recommendation? Effect
n False
n True

2.4.2 Usage Example

//

2.4.3 Reference

Functions:

bool munin_history_feed(MuninCtx * ctx, long song)
Add a song the the History Buffer. libmunin will automatically check if the song was recomned lately and use
this for further recomendations.

Ctx The Context to operate on.

Song A song to feed.

Returns True if the song was in the recomendations recently given.

Private API:

2.3. iterator.rst 9

libmunin Documentation, Release 0.0.1

2.5 persistence.rst

2.5.1 Description

2.5.2 Usage Example

//

2.5.3 Reference

Functions:

10 Chapter 2. Developer Section

CHAPTER

THREE

USER SECTION

3.1 Command Line Utility

This document is about the command utility of libmunin called naglfar.

3.1.1 Options

Synopsis:
naglfar [genopts] [command] [options]

Usage:
naglfar -h | --help
naglfar -v | --version
naglfar database [-f|--file <FILE>] [--subsitute|-s]
naglfar history [-f|--file <FILE>]

database:

-f | -file <FILE>
Read Database from <FILE>. If no file is specified, read from stdin.

Format:

Todo
Specify format

-s | -subsitute
Subistute current database contents with this

11

libmunin Documentation, Release 0.0.1

12 Chapter 3. User Section

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

13

	Design
	Overview
	Glossary

	Developer Section
	context.h
	song.h
	iterator.rst
	history.rst
	persistence.rst

	User Section
	Command Line Utility

	Indices and tables

